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Energy Release Rate of Postbuckled Laminates
with a Through-Width Delamination

S. K. Cheong* and C. T. Sun**
(Received October 12, 1992)

The strain energy release rate is calculated for buckled one-dimensional delamination
(through-width delamination) in composite laminates subjected to in-plane compression. A
crack closure method based on plate finite elements is used in this analysis. For some laminates
containing a one-dimensional delamination in cylindrical bending, closed form solutions are
available. The present finite element solutions show excellent agreement with the analytical
solutions. The strain energy release rate for various types of laminates is also calculated using
the present finite element method. The results show that the strain energy release rate strongly
depends on the type of laminate.
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1. Introduction

Delamination can reduce the load-carrying
capacity of composite structures. When the
delaminated composite structure is under com­
pressive loading, postbuckling of the delaminated
region may create high interlaminar stresses and
extensive delamination growth, which leads to
structural instability. Since the stresses at the
delamination boundary are mathematically oscil­
lating (England, 1965; Erdogan, 1963; Williams,
1959), calculated ~tresses there have little mean­
ing. Strain energy release rates are finite parame­
ters which characterize the intensity of the stresses
near the singularity. Hence, many of the current
efforts to predict instability-related delamination
growth are based on strain energy release rates
(Chai, 1981; Yin and Wang, 1984; Whitcomb,
1981 ; Yin, 1985; Chai and Babcock, 1985; Yin
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and Jane, 1989; Whitcomb and Shivakumar,
1989; Whitcomb, 1989).

One-dimensional delamination (i.e., through­
width delamination) (see Fig. I) was analyzed on
the basis of beam-plate theory (Chai, 1981 ; Yin
and Wang, 1984). Chai et al.(l981) calculated the
strain energy release rate by differentiation of the
strain energy with respect to delamination length.
The strain energy was calculated by assuming the
generalized plane strain condition. For simplicity
the properties of the plate were assumed homoge­
neous, isotropic, and linearly elastic. Yin and
Wang(l984) used the path-independent J-integral
concept to obtain an expression of the energy
release rate for a homogeneous orthotropic plate.
The energy release rate was expressf:d in terms of
the axial forces and bending moments acting
across the various cross sections adjacent to the
tip of delamination. The plane strain assumption
was used in that paper. But the incorrect buckling
strain was used in that paper (Yin and Wang,
1984). Whitcomb( 1981) analyzed thf: postbuckled
through-width delamination on the basis of
geometrically nonlinear finite element stress anal­
ysis. The stress distributions and strain energy
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Fig. 1 Configuration of a through-width delamina­
tion
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2. Analytical Solutions

method.

Accurate postbuckling solution of a through­
the-width delamination (see Fig. l) may be
obtained relatively easily. Both general and local
postbuckling solutions for the through-the-width
delamination are available (Chai, 1981; Yin and
Wang, 1984).

Chai et al.( 1981) solved a through-the-width
delamination problem based on beam-column
theory. For the general case of through-the-width
delamination, eight equations were obtained,
which can not be solved in closed form. Cylindri­
cal bending of the plate was assumed along with
a generalized plane strain condition. A numerical
iterative scheme was employed to calculate the
energy release rate. A closed form solution for a
thick beam model was obtained by neglecting
bending contributions of the base laminate and

lower sublaminate. The formula for C*, that is,
Eq. (27) of Chai et al.(198l) can be rewritten as
follows:

C * (1-1/2)Eh (1 hC\( * *)
2(1-h+hl)2 - 11 CO-CCT

[C~+C~T[3+41~hJl (1)

where h=h/t, !=l/L, and

C~T 3(1~ 1/2) [~r (2)

is the buckling strain for the upper sublaminate.
Yin and Wang(1984) solved a through-the­

width delamination problem by using the J­

integral method. They considered a homogeneous
orthotropic plate of a linearly elastic material
whose orthotropic axes coincide with the longitu­
dinal, normal, and transverse directions of the
plate (Xl> X2, X3, respectively). The solution of a
general case with the plane strain condition was
obtained in terms of the axial forces and bending
moments as follows (Yin and Wang, 1984):

1- 1/131/31 [ Up*)2 + 12(M*)2
2Ed3 h(1- h) i?

12UP* /2 - M*)2 ]
+ (1_h)3 '
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release rates were calculated for various delamina­
tion lengths, delamination depths, applied loads,
and lateral deflections. From the preceding
papers (Chai, 1981 ; Yin and Wang, 1984; Whit­
comb, 1981), the strain energy release rate can be
calculated only for delamination in isotropic
plate and unidirectional composite plate.

In this study, a crack closure method based
directly on plate resultants and kinematic vari­
ables is proposed for calculating the strain energy
release rate of postbuckled delamination. By
using the plate finite elements, the strain energy
release rate can be calculated for one-dimensional
delamination in various types of laminated com­
posite plates. The present method can be applied
to two-dimensional delamination problem. Two­
dimensional delamination problem will be
presented in the next paper. Geometrical non­
linearity in the buckled region is taken into con­
sideration. The strain energy release rate is calcu­
lated incrementally. The accuracy of this method
is evaluated by comparing the present solution
with existing closed form solutions for one­
dimensional delamination problems. The strain
energy release rate for various types of laminates

is also calculated using the present finite element
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where

po = hIpl +6(1- ii>Ml/ t] - H,
M*=M3 -MJ?,

(4)
(5)

3. Finite Element Modelling and
Crack Closure Method

Assuming the plane strain condition, we can
obtain the buckling strain as follows.

Assume that the upper sublaminate is thin as
compared with the base laminate and the lower
sublaminate, and Pb can be expressed as follows:

ANSYS (a commercial finite eleml:nt code) was
used to analyze the configurations considered. An
eight-noded layered plate element (Kohnke, 1989)
was used in the study. This element includes the
effect of transverse shear deformation (Ahmad,
1970). Geometrical nonlinearity resulting from
large deflection was included in the analysis.

In the finite element analysis, the upper and
lower sublaminates in the delaminated region and
the base plate were modelled by plate elements,
At the delamination front, the nodes were rigidly
connected to ensure continuity in dlisplacements
and rotations.

Figure 2 shows the finite element model for a
one-dimensional delamination problem. Figure
2(c) shows the configuration of the delamination
front (at nodes Ci) before the virtual crack exten­
sion. The crack closure concept requires letting

the crack grow by Lla and then using the nodal
forces and moments at nodes Ci and d, before
crack extension to close the opening due to the
extensions. If Lla is small, this crack opening can
be approximated by the crack opening at nodes ai

(7)

Et
(I-I/z) co(O:s;; co< ccr), (8a)

Et (1-fi)co+hlccr( "> )
(1-I/Z) (1-h+hl) co,-ccr'

(8b)

P

where Hand M1 are axial force and bending
moment of the base laminate ahead of the crack
tip. The axial force and bending moment of the
upper sublaminate behind the crack tip are Hand

M3, respectively.
In this study, the compliance method is used to

obtain the expression for the strain energy release
rate for a similar problem but with the plane
strain condition. Considering Pb as a force acting
on the base laminate, the strain energy is

The strain energy release rate is expressed as
follows:

u= (1L3:2) [ c~/ + (tL-h~+ hI) [L(t- h)

(co
Z

2cc/) +hlccr(co-ccr»)} (9)

Equation (8b) was obtained by calculating the
axial force of the base laminate from Eq.(25) of
Chai et al.(198 I ) and dividing by (1- I/Z) to
account for the plane strain assumption. From the
above equations, the strain energy can be

obtained as follows:
I

(b) Side view(a) Top view

(c) Configuration of delamination front
region

Fig. 2 Finite element model for a one-dimensional
delamination
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(co-ccr)[ co+ccr(3+41~h)l (10)
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1'=101.6 mm (4 inches),

t=5.08 mm (0.2 inch),

h= 1.016 mm (0.04 inch).

. These dimensions correspond to 8 graphite/epoxy

plies for the upper sublaminate and 32 plies for

the lower sublaminate.
Figure 3 shows the result of the isotropic thick

beam model for the generalized plane strain con­

dition. The closed form solution was obtained by
Chai(l981).

Figure 4 shows the results for the general case

of a through-the-width delamination for thewhere

LlA =crack closure area,

u'!"= i-th component of displacement
(i= I, 2, 3) or rotation (i=4, 5),

Llu,aj=increment of u,aj between load steps,

F,ej = i-th component of force
(i=I, 2, 3) or moment

(i =4, 5) at node Cj,

LS=number of load steps.

As seen from Fig. 2(c), the terms related to b2 and
dz should be excluded in Eq. (II). To obtain the

total strain energy release rate the contributions
of the lower sublaminate should be added to Eq.
(II).

and bi before crack extension. Since postbuckling

of the delaminated region is nonlinear, an in­
cremental crack closure procedure was used.

Assume that the upper sublaminate is thin and

would buckle first. The strain energy release rate

can be calculated approximately by using the
following formula. For the upper sublaminate, we

have

4. Results and Discussion

(II)
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Energy release rate for a thick beam model of
a postbuckled through-width delamination
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Fig. 3

In the numerical example, both isotropic mate­

rials and composites were considered. For
isotropic materials, the elastic properties were
given by

E=67 GPa (9.7 msi), lI=0.33.

The material properties of the graphite/epoxy
used in this study were
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Energy release rate for a general case of a
postbuckled through-width delamination

Fig. 4

E 1=134 GPa (19.4 msi),

E 2=E3 = 10.2 GPa (1.48 msi),

G12= G I3 =5.52 GPa (0.8 msi),
Gz3=3.43 GPa (0.5 msi),

lI12 = lI13 = 0.3,

lI23=0.49.

The thickness of each ply is 0.127 mm (0.005
inch).

The dimensions of the beam model were

L=203.2 mm (8 inches),
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isotropic material. The analytical solution was

obtained by substituting the moments and forces

obtained from the finite element analysis into Eq.

(3).

Figure 5 shows the results for the general case

of a postbuckled laminate [08//032 ], The symbol

U/) in [Os//Od laminate indicates that the

delamination is between 08 plies and 032 plies.

Again the analytical solution was obtained from

Eq. (3) using the moments and forces obtained

from the present finite element analysis.

The above results clearly indicate that the

present finite element crack closure method is

quite accurate in calculating the strain energy

release rate for this type of problem.

Figure 6 shows the results for various kinds of

postbuckled laminates. The results show that the

energy release rates strongly depend on the type of

laminate. Analyzing the postbuckled through­

width delamination, twenty load steps and fifty

load steps were used for the isotropic plate and

the composite plate, respectively.

5. Conclusions

700 .------------.--,
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An incremental crack closure mdhod In con­

junction with plate finite elements was used to

calculate strain energy release rate for one­

dimensional delamination subjected to in-plane

compression. The finite element solutions for

various kinds of delamination problems were

compared with analytical solutions. Excellent

agreement was obtained.

The strain energy release rate for one­

dimensional delamination in various types of

laminated composite plates was also calculated

using the present finite element method. The

results show that the strain energy release rate

strongly depends on the type of laminate. The

strain energy release rate for laminate [08//9024/0

8] is about thirteen times that for laminate [908//
024/90S] when the applied strain is 0.0025.

The present method can be also extended to

calculate the strain energy release fate for two­

dimensional delamination in various types of

laminated composite plates.
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